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Catenary deformations of inextensible networks
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Abstract. A network formed from two initially orthogonal families of cables is supported at its edges and allowed to
sag under its own weight. The net is idealized as a continuum formed from inextensible fibers, with no shear
resistance. Several families of exact solutions are exhibited, all involving catenaries in one way or another. These
solutions may be useful in connection with perturbation analyses of boundary-value problems.

1. Introduction

This paper gives some examples of deformations of a cable network that hangs under its own
weight. The network is formed from two families of cables that initially lie parallel to the x-
and y-directions of a system of Cartesian coordinates. In one set of solutions, the cables of
one family are congruent catenaries that lie in planes that need not be vertical, while the
cables of the second family lie along arbitrary congruent curves in vertical planes. In another
set, the catenaries lie in vertical planes but the cross-cables lie in planes that need not be
vertical. In the final set, the deformed network is a cylinder with catenary cross-section.
Other special cases are considered.

We use Rivlin's [1] theory of inextensible networks with no shear resistance (see also
Pipkin [2, 3], Kuznetsov [4]). The deformations that we consider furnish exact finite-
deformation solutions of the governing equations for this theory (Sec. 2). Boundary
conditions are not pre-assigned, so it would be only accidental if one of these solutions
should satisfy some specified set of conditions. Problems with specified boundary data are
often solved by linearization about some exact non-linear solution; the families of exact
solutions given here may be useful for this purpose.

2. Basic equations

We consider nets formed from inextensible fibers that initially lie parallel to the x- and y-axes
of a system of Cartesian coordinates. The fibers are fixed together at the points where they
intersect. The net is treated as a continuum, so that every material line x = constant or
y = constant is regarded as an inextensible fiber. In a deformation, the particle initially at
(x, y) goes to the place r(x, y) in three-dimensional space. The derivatives

a=r x and b=ry, (2.1)

are vectors tangential to the deformed fibers, and we refer to these fibers as a-lines and
b-lines. The assumed inextensibility of the fibers means that a and b are unit vectors:

(2.2)a a=b-b=.
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In all cases to be considered here, the deformed network forms a translation surface (Voss
[51),

r(x, y) = P(x) + Q(y), a = P'(x), b = Q'(y). (2.3)

It is convenient to take P(0) = Q(0) = 0, so that r = P(x) is the curve followed by the
deformed fiber y = 0 and r = Q(y) represents the deformed fiber x = 0. We call these base
curves [3]. All a-lines are congruent to r = P(x), and all b-lines are congruent to r = Q(y). We
usually exhibit only the forms of a(x) and b(y); P(x) and Q(y) can then be obtained by
integration.

In Rivlin's [1] theory it is assumed that there is no resistance to changes in the angle
between fibers of the two families. The force per unit length exerted on a b-line by the
a-lines is Taa, and that exerted on an a-line by the b-lines is Tbb. We refer to Ta and Tb as
fiber tensions, although in fact the tension in a real a-line is Ta/ln, where n is the number of
real cables y = constant per unit length in the y-direction. The force acting from right to left
across the arc (dx, dy) then

Taa dy - Tbb dx . (2.4)

Let w be the weight of the network, per unit initial area, and let k be a vertically upward
unit vector. Then equilibrium requires that

(Taa)x + (Tbb) = wk. (2.5)

The solutions that we obtain are for cases in which w is constant. The tensions Ta and Tb are
reactions to the inextensibility constraints (2.2), taking whatever values equilibrium may
require.

3. Independent catenaries

The simplest solutions are those in which the fibers of one family are unstressed, say

Tb = 0, b(y) arbitrary. (3.1)

The shape of the b-lines is arbitrary since they carry no load. In such cases all of the weight
of both families is supported by the a-lines alone. With Tb = 0, (2.5) yields

a(x) = (a0 + kxlL)IA(x) (3.2)

and

Ta = wLA(x) , (3.3)

where A(x) is the magnitude of the numerator in (3.2), so that a is a unit vector. If ao = +k,
the a-lines hang straight down. If a is not vertical, the numerator in (3.2) is horizontal for
some x, so by choice of the origin of x we can take a to be a horizontal unit vector. With
this choice,

A(x) = [1 + (x/L)2]" 2 (3.4)
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L is an arbitrary length.
By integrating P'(x) = a(x) we find that

P(x)IL = a + k cosh , (3.5)

where

sinh = xIL . (3.6)

The coordinate x measures arc length along the deformed or undeformed fiber. In terms of
horizontal and vertical coordinates = a 0 P and 71 = k P, (3.5) is equivalent to 71IL =
cosh(/L), so the curve r = P(x) is a catenary. Just as a single cable in isolation hangs as a
catenary, the a-lines here are all catenaries because the b-lines exert no force on them except
the part of the weight that is due to the b-lines.

4. Cables in vertical planes

Now let the a-lines be catenaries, with a(x) given by (3.2) and (3.4), and let the base curve
r = Q(y) for the second family be an arbitrary curve in a vertical plane. Then b(y) has the
form

b(y) = [bo +f(y)k]/B(y), (4.1)

where

B(y) = [1 +f2 (y)]1 /2. (4.2)

Here bo is an arbitrary horizontal unit vector and f(O) = 0 by convention. (The case in which
the b-lines hang straight down can be treated separately.)

It is easy to verify that (2.5) is satisfied if

Ta = [w - Cf'(y)]LA(x) (4.3)

and

Tb = CB(y), (4.4)

where C is arbitrary. The deformation is stable only if the fiber tensions are non-negative, so
C - 0 is required for stability. Assuming that C >0 and L >0 (so that the a-lines cup
upward), we see that the tension in the b-lines relieves some of the tension in the a-lines if
f'(y) > O0 and adds to the tension in the a-lines if f '(y) < O0. In the former case the b-lines cup
upward, and they cup downward in the latter case.

When f(y) =y/Ll, the b-lines are catenaries too. Let p be defined by C = wLlp. Then
with both families vertical catenaries, the tensions are

Ta = (1 - p)wLA(x), Tb = pwL1B(y), (4.5)

where

B(y) = [1 + (yL,)2] 2
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If L and L1 are positive, the tensions are non-negative if 0 - p - 1. We see that p represents
the proportion of the total weight that is supported by the b-lines.

When w = 0 but C O the solution is a special case of a general class of solutions found in
an earlier paper [3] in which all equilibrium configurations were determined for weightless
networks deformed as translation surfaces.

5. Swayed cross-cables

Let the a-lines be catenaries in vertical planes, as in Section 4, but suppose that the base
curve r = Q(y) is an arbitrary plane curve in a plane that is not vertical. Let b(O) = b0, and
suppose that r = Q(y) lies in the plane spanned by bo and k + aaO. Then b(y) has the form

b(y) = [bo +f(y)(k + aao)]/B(y), (5.1)

where f(O) = 0. B(y) is the magnitude of the vector in the numerator. Recall that a(x) is
given by (3.2) and (3.4). Then it is straightforward to verify that (2.5) is satisfied if

Ta = LA(x) [w - 1- ax/LI (5.2)

and

Tb = CB(y)/(1 - axIL)2 . (5.3)

Because of the singularities at x = Lla, the domain of x must be restricted to one of the
regions x > Lla or x < Lla. At x = La, a(x) is parallel to k + aao and thus the a-line is
tangential to the plane of the b-line.

When f(y) = y/L1 , the b-lines are also catenaries. We show how to verify this in a similar
case in Section 6. For this case, write C as C = wL1 p. Then

Ta = w[(l -p)L - ax]A(x)/(1 - axIL) (5.4)

and

Tb =pwL1B(y)/(1 - axlL)2 . (5.5)

If L and L1 are positive, p - 0 is needed to ensure that Tb - 0. Then Ta - 0 as well in the
two separate regions ax < (1 - p)L and ax > L.

6. Swayed catenaries

Now let the b-lines be congruent to an arbitrary curve r = Q(y) in a vertical plane, as in
Section 4, but suppose that the catenary a-lines are swayed out of the vertical. Then a(x) has
the form

a(x) = [aO + (x/L)(k + 13bo)]/A(x), (6.1)
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where a0 and bo are horizontal unit vectors and A(x) is the magnitude of the numerator, so
that a(x) is a unit vector. To see that the a-lines are indeed catenaries, define

v = k + bo, v2 = 1 + 2 , (6.2)

u = a - va o b/v 2 , (6.3)

and

xlL = xlL +Pao bo/v2. (6.4)

The magnitude u = lul is given by

U2 = 1 - ( · bo/v) 2. (6.5)

Then u and v are orthogonal, and (6.1) takes the form

a(x) = (u + vxlL)IA(x) (6.6)

with

A(x) = [U2 + (vxL)2 ] 2 . (6.7)

Integration of P'(x) = a(x) then gives

P(x) = (Lulv)[(ulu); + (v/v) cosh ;], (6.8)

where

sinh = (vlu)(xlL) . (6.9)

With a(x) given by (6.1) and b(y) by (4.1), it can be verified that (2.5) is satisfied if

Ta = [w(l - 3f + 3yf') - Cf'(y)]LA(x)/(1 -/3f) 2 (6.10)

and

Tb = (C - 3wy)B(y)/(1 - Pf), (6.11)

where A(x) is given by (6.7) and B(y) by (4.2). The constant C is arbitrary.
In the special case f(y) = y/L, the b-lines are catenaries and the expressions (6.10) and

(6.11) reduce to forms like (5.4) and (5.5), but with the roles of a- and b-lines interchanged.

7. Catenary cylinders

When b(y) = b0, constant, the b-lines are parallel straight lines and the deformed surface is a
cylinder. It is found that for equilibrium, a(x) must have the form

a(x) = [aO + (x/L)(k + P(x)bo)]IA(x), (7.1)

where A(x) is the magnitude of the vector in the numerator. Except for the term involving
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b0 , a(x) is parallel to ao + kx/L, so the cross-section of the cylinder is a catenary. The a-lines
are catenaries themselves if ,/(x) is constant, but otherwise they are rather arbitrary
(congruent) curves on the cylinder.

The tensions are found from (2.5) to be

Ta = wLA(x) (7.2)

and

Tb = To(x) - wy[x3(x)]'. (7.3)

Here T(x) represents an arbitrary tension in each straight b-line.
It is possibly worth pointing out that in all of the preceding solutions, the unit vector bo

can be taken to lie in the plane of a and k. The deformed net is then all in one vertical
plane. In such cases it can happen that some part of the plane is covered more than once by
the net. For the real physical network, this means that two parts of the network are side by
side in contact.
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